A comparative evaluation of wavelet-based methods for hypothesis testing of brain activation maps.

نویسندگان

  • M J Fadili
  • E T Bullmore
چکیده

Wavelet-based methods for hypothesis testing are described and their potential for activation mapping of human functional magnetic resonance imaging (fMRI) data is investigated. In this approach, we emphasise convergence between methods of wavelet thresholding or shrinkage and the problem of hypothesis testing in both classical and Bayesian contexts. Specifically, our interest will be focused on the trade-off between type I probability error control and power dissipation, estimated by the area under the ROC curve. We describe a technique for controlling the false discovery rate at an arbitrary level of error in testing multiple wavelet coefficients generated by a 2D discrete wavelet transform (DWT) of spatial maps of fMRI time series statistics. We also describe and apply change-point detection with recursive hypothesis testing methods that can be used to define a threshold unique to each level and orientation of the 2D-DWT, and Bayesian methods, incorporating a formal model for the anticipated sparseness of wavelet coefficients representing the signal or true image. The sensitivity and type I error control of these algorithms are comparatively evaluated by analysis of "null" images (acquired with the subject at rest) and an experimental data set acquired from five normal volunteers during an event-related finger movement task. We show that all three wavelet-based algorithms have good type I error control (the FDR method being most conservative) and generate plausible brain activation maps (the Bayesian method being most powerful). We also generalise the formal connection between wavelet-based methods for simultaneous multiresolution denoising/hypothesis testing and methods based on monoresolution Gaussian smoothing followed by statistical testing of brain activation maps.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Method for Detection of Backscattered Signals from Breast Cancer Tumors: Hypothesis Testing Using an Adaptive Entropy-Based Decision Function

Introduction In recent years methods based on radio frequency waves have been used for detecting breast cancer. Using theses waves leads to better results in early detection of breast cancer comparing with conventional mammography which has been used during several years. Materials and Methods In this paper, a new method is introduced for detection of backscattered signals which are received by...

متن کامل

A New Method for Sperm Detection in Human Semen: Combination of Hypothesis Testing and Local Mapping of Wavelet Sub-Bands

Introduction Automated methods for sperm characterization in microscopic videos have some limitations such as: low contrast of the video frames and possibility of neighboring sperms to touch each other. In this paper a new method is introduced for detection of sperms in microscopic videos. Materials and Methods In this work, first microscopic videos are captured from specimens of human semen. S...

متن کامل

Wavelet shrinkage versus Gaussian spatial filtering of functional MRI data

Objective The comparison between wavelet-based simultaneous multiscale denoising/hypothesis testing and single scale Gaussian spatial filtering followed by statistical testing of brain activation maps is carried out for a simple block-type visual paradigm EPI MRI experiment. Probabilistic wavelet shrinkage provides means to consistently combine multiresolution denoising and hypothesis testing i...

متن کامل

Resampling methods for improved wavelet-based multiple hypothesis testing of parametric maps in functional MRI

Two- or three-dimensional wavelet transforms have been considered as a basis for multiple hypothesis testing of parametric maps derived from functional magnetic resonance imaging (fMRI) experiments. Most of the previous approaches have assumed that the noise variance is equally distributed across levels of the transform. Here we show that this assumption is unrealistic; fMRI parameter maps typi...

متن کامل

Comparative Analysis of Image Denoising Methods Based on Wavelet Transform and Threshold Functions

There are many unavoidable noise interferences in image acquisition and transmission. To make it better for subsequent processing, the noise in the image should be removed in advance. There are many kinds of image noises, mainly including salt and pepper noise and Gaussian noise. This paper focuses on the research of the Gaussian noise removal. It introduces many wavelet threshold denoising alg...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • NeuroImage

دوره 23 3  شماره 

صفحات  -

تاریخ انتشار 2004